Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(27): 3705-3708, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38477139

RESUMO

C-N bonds play a critical role in pharmaceutical, agrochemical, and materials sciences, necessitating ever-better methods to forge this linkage. Here we report a simple procedure for direct C(sp3)-H azidation using iron or manganese catalysis and a nucleophilic azide source. All reagents are commercially available, the experimental procedure is simple, and we can use the C-H donor substrate as the limiting reagent, a challenge for many C-H azidation methods. Preliminary experiments are consistent with a hydrogen atom transfer (HAT)/radical ligand transfer (RLT) radical cascade mechanism and a wide variety of substrates can be azidated in moderate to high yields.

2.
Chem Sci ; 15(1): 124-133, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38131080

RESUMO

Ligand-to-metal charge transfer (LMCT) is a mechanistic strategy that provides a powerful tool to access diverse open-shell species using earth abundant elements and has seen tremendous growth in recent years. However, among many reaction manifolds driven by LMCT reactivity, a general and catalytic protocol for modular difunctionalization of alkenes remains unknown. Leveraging the synergistic cooperation of iron-catalyzed ligand-to-metal charge transfer and radical ligand transfer (RLT), here we report a photocatalytic, modular difunctionalization of alkenes using inexpensive iron salts catalytically to function as both radical initiator and terminator. Additionally, strategic use of a fluorine atom transfer reagent allows for general fluorochlorination of alkenes, providing the first example of interhalogen compound formation using earth abundant element photocatalysis. Broad scope, mild conditions and versatility in converting orthogonal nucleophiles (TMSN3 and NaCl) directly into corresponding open-shell radical species are demonstrated in this study, providing a robust means towards accessing vicinal diazides and homo-/hetero-dihalides motifs catalytically. These functionalities are important precursors/intermediates in medicinal and material chemistry. Preliminary mechanistic studies support the radical nature of these transformations, disclosing the tandem LMCT/RLT as a powerful reaction manifold in catalytic olefin difunctionalization.

3.
Nat Chem ; 15(12): 1683-1692, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37957278

RESUMO

Incorporation of fluoroalkyl motifs in pharmaceuticals can enhance the therapeutic profiles of the parent molecules. The hydrofluoroalkylation of alkenes has emerged as a promising route to diverse fluoroalkylated compounds; however, current methods require superstoichiometric oxidants, expensive/oxidative fluoroalkylating reagents and precious metals, and often exhibit limited scope, making a universal protocol that addresses these limitations highly desirable. Here we report the hydrofluoroalkylation of alkenes with cheap, abundant and available fluoroalkyl carboxylic acids as the sole reagents. Hydrotrifluoro-, difluoro-, monofluoro- and perfluoroalkylation are all demonstrated, with broad scope, mild conditions (redox neutral) and potential for late-stage modification of bioactive molecules. Critical to success is overcoming the exceedingly high redox potential of feedstock fluoroalkyl carboxylic acids such as trifluoroacetic acid by leveraging cooperative earth-abundant, inexpensive iron and redox-active thiol catalysis, enabling these reagents to be directly used as hydroperfluoroalkylation donors without pre-activation. Preliminary mechanistic studies support the radical nature of this cooperative process.

5.
Sci Adv ; 9(35): eadh5195, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37656788

RESUMO

Empowered by the ubiquity of carbonyl functional groups in organic compounds, decarbonylative functionalization was prevalent in the construction of complex molecules. Under this context, asymmetric decarbonylative functionalization has emerged as an efficient pathway to accessing chiral motifs. However, ablation of enantiomeric control in a conventional 2e transition metal-catalyzed process was notable because of harsh conditions (high temperatures, etc.) that are usually required. To address this challenge and use readily accessible aldehyde directly, we report the asymmetric radical decarbonylative azidation and cyanation. Diverse aldehydes were directly used as alkyl radical precursor, engaging in the subsequent inner-sphere or outer-sphere ligand transfer where functional motifs (CN and N3) could be incorporated in excellent site- and enantioselectivity. Mild conditions, broad scope, excellent regioselectivity (driven by polarity-matching strategy), and enantioselectivity were shown for both transformations. This radical decarbonylative strategy using aldehydes as alkyl radical precursor has offered a powerful reaction manifold in asymmetric radical transformations to construct functional motifs regio- and stereoselectively.

6.
Chem Catal ; 3(6)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37720729

RESUMO

Ligand-to-metal charge transfer (LMCT) using stoichiometric copper salts has recently been shown to permit decarboxylative C-N bond formation via an LMCT/radical polar crossover (RPC) mechanism; however, this method is unable to function catalytically and cannot successfully engage unactivated alkyl carboxylic acids, presenting challenges to the general applicability of this approach. Leveraging the concepts of ligand-to-metal charge transfer (LMCT) and radical-ligand-transfer (RLT), we herein report the first photochemical, iron-catalyzed direct decarboxylative azidation. Simply irradiating an inexpensive iron nitrate catalyst in the presence of azidotrimethylsilane allows for a diverse array of carboxylic acids to be converted to corresponding organic azides directly with broad functional group tolerance and mild conditions. Intriguingly, no additional external oxidant is required for this reaction to proceed, simplifying the reaction protocol. Finally, mechanistic studies are consistent with a radical mechanism and suggest that the nitrate counteranion serves as an internal oxidant for turnover of the iron catalyst.

7.
Beilstein J Org Chem ; 19: 1225-1233, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37614927

RESUMO

The place of alkyl radicals in organic chemistry has changed markedly over the last several decades, evolving from challenging-to-generate "uncontrollable" species prone to side reactions to versatile reactive intermediates enabling construction of myriad C-C and C-X bonds. This maturation of free radical chemistry has been enabled by several advances, including the proliferation of efficient radical generation methods, such as hydrogen atom transfer (HAT), alkene addition, and decarboxylation. At least as important has been innovation in radical functionalization methods, including radical-polar crossover (RPC), enabling these intermediates to be engaged in productive and efficient bond-forming steps. However, direct engagement of alkyl radicals remains challenging. Among these functionalization approaches, a bio-inspired mechanistic paradigm known as radical ligand transfer (RLT) has emerged as a particularly promising and versatile means of forming new bonds catalytically to alkyl radicals. This development has been driven by several key features of RLT catalysis, including the ability to form diverse bonds (including C-X, C-N, and C-S), the use of simple earth abundant element catalysts, and the intrinsic compatibility of this approach with varied radical generation methods, including HAT, radical addition, and decarboxylation. Here, we provide an overview of the evolution of RLT catalysis from initial studies to recent advances and provide a conceptual framework we hope will inspire and enable future work using this versatile elementary step.

8.
Nat Commun ; 13(1): 7881, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36564375

RESUMO

Vicinal diamines are privileged synthetic motifs in chemistry due to their prevalence and powerful applications in bioactive molecules, pharmaceuticals, and ligand design for transition metals. With organic diazides being regarded as modular precursors to vicinal diamines, enormous efforts have been devoted to developing efficient strategies to access organic diazide generated from olefins, themselves common feedstock chemicals. However, state-of-the-art methods for alkene diazidation rely on the usage of corrosive and expensive oxidants or complicated electrochemical setups, significantly limiting the substrate tolerance and practicality of these methods on large scale. Toward overcoming these limitations, here we show a photochemical diazidation of alkenes via iron-mediated ligand-to-metal charge transfer (LMCT) and radical ligand transfer (RLT). Leveraging the merger of these two reaction manifolds, we utilize a stable, earth abundant, and inexpensive iron salt to function as both radical initiator and terminator. Mild conditions, broad alkene scope and amenability to continuous-flow chemistry rendering the transformation photocatalytic were demonstrated. Preliminary mechanistic studies support the radical nature of the cooperative process in the photochemical diazidation, revealing this approach to be a powerful means of olefin difunctionalization.


Assuntos
Alcenos , Ferro , Alcenos/química , Ligantes , Catálise , Ferro/química , Diaminas
9.
Nat Commun ; 13(1): 7035, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36396652

RESUMO

Emerging as a powerful tool for lead optimization in pharmaceutical research and development, to develop the facile, general protocols that allows the incorporation of fluorine-containing motif in drug candidates has accumulated enormous research interest in recent years. Among these important motifs, the incorporation of strategic motif CF3 on aliphatic chain especially with the concomitant construction of trifluoromethylated alkanes bearing a CF3-substituted stereogenic carbon, is of paramount importance. Herein, we disclose an asymmetric nickel-catalyzed reductive trifluoroalkylation of alkenyl halides for enantioselective syntheses of diverse α-trifluoromethylated allylic alkanes, offering a general protocol to access the trifluoromethyl analogue to chiral α-methylated allylic alkanes, one of the most prevalent key components among natural products and pharmaceuticals. Utilities of the method including the application of the asymmetric trifluoroalkylation on multiple biologically active complex molecules, derivatization of transformable alkenyl functionality were demonstrated, providing a facile method in the diversity-oriented syntheses of CF3-containing chiral drugs and bioactive-molecules.


Assuntos
Carbono , Flúor , Estereoisomerismo , Catálise , Alcanos
10.
Angew Chem Int Ed Engl ; 61(36): e202208938, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35791279

RESUMO

Monofluoroalkanes are important in many pharmaceuticals, agrochemicals and functional materials. However, the lack of easily available and transformable monofluoroalkylating reagents that facilitate a broad array of transformations has hampered the application of monofluoroalkylation. Herein, we report a general and efficient method of preparing diverse aliphatic monofluorides with monofluoroalkyl triflate as the synthetic scaffold. Using both nickel-catalyzed hydromonofluoroalkylation of unactivated alkenes and copper-catalyzed C-C bond formation, the general diversification of the monofluoroalkylating scaffold has been exhibited. The broad utility of this monofluoroalkylating reagent is shown by concise conversion into various conventional fluoroalkylating reagents and construction of monofluoro-alkoxy, -alkylamino motifs with commercially available heteroatom-based coupling partners.


Assuntos
Alcenos , Níquel , Alcenos/química , Catálise , Cobre , Fluoretos , Níquel/química
11.
J Am Chem Soc ; 144(26): 11810-11821, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35729791

RESUMO

Development of visible light-mediated atom transfer radical addition of haloalkanes onto unsaturated hydrocarbons has seen rapid growth in recent years. However, due to its radical chain propagation mechanism, diverse functionality other than the pre-existing (pseudo-)halide on the alkyl halide source cannot be incorporated into target molecules in a one-step, economic fashion. Inspired by the prominent reactivities shown by cytochrome P450 hydroxylase and non-heme iron-dependent oxygenases, we herein report the first modular, dual catalytic difunctionalization of unactivated alkenes via manganese-catalyzed radical ligand transfer (RLT). This RLT elementary step involves a coordinated nucleophile rebounding to a carbon-centered radical to form a new C-X bond in analogy to the radical rebound step in metalloenzymes. The protocol leverages the synergetic cooperation of both a photocatalyst and earth-abundant manganese complex to deliver two radical species in succession to minimally functionalized alkenes, enabling modular diversification of the radical intermediate by a high-valent manganese species capable of delivering various external nucleophiles. A broad scope (97 examples, including drugs/natural product motifs), mild conditions, and excellent chemoselectivity were shown for a variety of substrates and fluoroalkyl fragments. Mechanistic and kinetics studies provide insights into the radical nature of the dual catalytic transformation and support radical ligand transfer (RLT) as a new strategy to deliver diverse functionality selectively to carbon-centered radicals.


Assuntos
Alcenos , Manganês , Alcenos/química , Carbono , Catálise , Ligantes , Manganês/química
12.
J Am Chem Soc ; 144(14): 6543-6550, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35378033

RESUMO

Fluorinated motifs are frequently encountered in drugs and agrochemicals. Incorporating fluorine-containing motifs in drug candidates for lead optimization in pharmaceutical research and development has emerged as a powerful tool. The construction of molecules that feature a trifluoromethyl (CF3-) group on a stereogenic carbon has accumulated broad research efforts. Unlike its well-explored, biologically active methyl counterpart, asymmetric construction of ß-trifluoromethylated alcohols bearing adjacent stereocenters still remains elusive. Through retrosynthetic analysis, we posited that followed by sequential reduction of carbonyl, the initial construction of chiral α-trifluoromethylated ketones could render the desired product in a facile, one-pot fashion. Herein, we developed the first example of nickel-catalyzed asymmtric reductive cross-coupling trifluoroalkylation of acyl chlorides for enantioselective synthesis of diverse α-trifluoromethylated ketones. The one-pot reduction of these α-trifluoromethylated ketones furnished corresponding alcohols bearing ß-CF3-substituted stereogenic carbons with excellent diastereoselectivity and complete enantioselective retention. High yields/enantioselectivity, mild conditions, and good functional group compatibility are shown in the system. Utilities of the method are also illustrated by applying asymmetric, late-stage trifluoroalkylation of biologically active complex molecules, revealing tremendous potential for development of CF3-containing chiral drugs.


Assuntos
Álcoois , Cetonas , Carbono/química , Catálise , Cetonas/química , Níquel , Estereoisomerismo
13.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35409252

RESUMO

YEATS (YAF9, ENL, AF9, TAF14, SAS5) family proteins recognize acylated histones and in turn regulate chromatin structure, gene transcription, and stress signaling. The chromosomal translocations of ENL and mixed lineage leukemia are considered oncogenic drivers in acute myeloid leukemia and acute lymphoid leukemia. However, known ENL YEATS domain inhibitors have failed to suppress the proliferation of 60 tested cancer cell lines. Herein, we identified four hits from the NMR fragment-based screening against the AF9 YEATS domain. Ten inhibitors of new chemotypes were then designed and synthesized guided by two complex structures and affinity assays. The complex structures revealed that these inhibitors formed an extra hydrogen bond to AF9, with respect to known ENL inhibitors. Furthermore, these inhibitors demonstrated antiproliferation activities in AF9-sensitive HGC-27 cells, which recapitulated the phenotype of the CRISPR studies against AF9. Our work will provide the basis for further structured-based optimization and reignite the campaign for potent AF9 YEATS inhibitors as a precise treatment for AF9-sensitive cancers.


Assuntos
Histonas , Leucemia Mieloide Aguda , Histonas/metabolismo , Humanos , Oncogenes , Domínios Proteicos
14.
Trends Chem ; 4(12): 1062-1064, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37389032

RESUMO

Nagib and Rajanbabu share a clever approach to remote desaturation triggered by metal-catalysed hydrogen atom transfer (mHAT) to an alkene, followed by intramolecular 1,6-HAT, and terminated via mHAT. This method both realizes a valuable synthetic transformation and provides multiple lessons for the design of HAT-mediated reactions.

15.
Org Lett ; 23(19): 7503-7507, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34528439

RESUMO

The first example of copper-catalyzed ring-opening, enantioselective arylation of cyclic ketoxime esters to access ω,ω-diaryl alkyl nitriles has been developed in high yield (up to 92% yield) with excellent enantioselectivity (up to 91% ee). Side-arm bis(oxazoline) ligand plays a significant role in this asymmetric catalytic transformation, which provides an efficient route to construct diverse chiral ω,ω-diaryl alkyl nitriles. Synthetic utility has also been demonstrated in the further derivatization of the ω,ω-diaryl alkyl nitrile to the corresponding amide.

16.
Chem Sci ; 12(10): 3726-3732, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34163646

RESUMO

A novel method by a one-step introduction of axial chirality and sterically hindered group has been developed for facile synthesis of axially chiral styrene-type carboxylic acids. With the palladium-catalyzed C-H arylation and olefination of readily available cinnamic acid established, this transformation demonstrated excellent yield, excellent stereocontrol (up to 99% yield and 99% ee), and broad substrate scope under mild conditions. The axially chiral styrene-type carboxylic acids produced have been successfully applied to Cp*CoIII-catalyzed asymmetric C-H activation reactions, indicating their potential as chiral ligands or catalysts in asymmetric synthesis.

17.
Chem Commun (Camb) ; 57(46): 5666-5669, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-33973583

RESUMO

Efficient copper-catalyzed 1,2-difunctionalization of alkenes with commercially available BrCH2Cl as a chloromethylating source was carried out, in which mild conditions, high reactivity, excellent functional-group tolerance, and late-stage modification of a bioactive molecule are demonstrated. This strategy offers a solution for the diverse syntheses of nitrogen-containing terminal alkyl chlorides, a common synthetic handle that is promising for multiple derivatizations. Mechanistic studies indicate that a chloromethyl radical is involved in the catalytic cycle.

18.
Angew Chem Int Ed Engl ; 60(27): 15020-15027, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33847433

RESUMO

Monofluorinated alkyl compounds are of great importance in pharmaceuticals, agrochemicals and materials. Herein, we describe a direct nickel-catalyzed monofluoromethylation of unactivated alkyl halides using a low-cost industrial raw material, bromofluoromethane, by demonstrating a general and efficient reductive cross-coupling of two alkyl halides. Results with 1-bromo-1-fluoroalkane also demonstrate the viability of monofluoroalkylation, which further established the first example of reductive C(sp3 )-C(sp3 ) cross-coupling fluoroalkylation. These transformations demonstrate high efficiency, mild conditions, and excellent functional-group compatibility, especially for a range of pharmaceuticals and biologically active compounds. Mechanistic studies support a radical pathway. Kinetic studies reveal that the reaction is first-order dependent on catalyst and alkyl bromide whereas the generation of monofluoroalkyl radical is not involved in the rate-determining step. This strategy provides a general and efficient method for the synthesis of aliphatic fluorides.

19.
Chem Commun (Camb) ; 56(78): 11605-11608, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32869786

RESUMO

Enantioselective synthesis of tetrahydroisoquinolines bearing an all-carbon quaternary stereogenic center, was achieved via asymmetric C-H activation with high enantioselectivities (up to 93% ee). Fair substrate tolerance was indicated throughout the scope investigation and no evident loss of enantioselectivity was exhibited in late-stage derivatization. This study provides incentives for the construction of diverse chiral isoquinoline derivatives, which are prevalent among pharmaceuticals, natural products, etc.

20.
Org Biomol Chem ; 18(28): 5354-5358, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32643742

RESUMO

With an iron catalyst playing dual roles as a radical initiator and terminator, we report a selective remote C-H functionalization to access δ-azido sulfonamides through a radical relay process. The reaction of N-fluorosulfonamide furnishes the corresponding products in excellent yields with high regioselective control. The key to success is the highly efficient iron-mediated redox azido transfer to the in situ generated carbon radical. The products provide incentives for drug discovery and ligand designs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...